Abstract

Understanding of cancellous bone permeability is lacking despite its importance in designing tissue engineering scaffolds for bone regeneration and orthopaedic surgery that relies on infiltration of bone cement into porous cancellous bone. We employed micro-computational fluid dynamics to investigate permeability for 37 cancellous bone specimens, eliminating stringent technical requirements of bench-top testing. Microarchitectural parameters were also determined for the specimens and correlated, using uni-variate and multi-variate regression analyses, against permeability. We determined that bone surface density, trabecular pattern factor, structure model index and trabecular number are other possible predictors of permeability (with R values of 0.47, 0.44, 0.40 and 0.33), in addition to the commonly used porosity parameter (R value of 0.38). Pooling these parameters and performing multi-variate linear regression analysis improved yield the R-value of 0.50, indicating that porosity alone is a poor predictor of cancellous bone permeability and, therefore, other parameters should be included for a better and improved linear model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.