Abstract
1. Homomeric human rho1 GABAC receptors were expressed in Xenopus oocytes and in human embryonic kidney cells (HEK293) in order to examine their conductance and permeability. 2. Reversal potentials of currents elicited by gamma-aminobutyric acid (GABA) were measured in extracellular solutions of various ionic composition to determine relative permeability of homomeric rho1 receptors. The rank order of anionic permeability was: SCN- > I- > NO3- > Br- > Cl- > formate (For-) > HCO3- > acetate (Ac-) approximately proprionate (Prop-) approximately isethionate (Ise-) approximately F- approximately PO4-. 3. In the oocyte expression system, relative permeabilities to SCN-, I-, NO3-, Br- and HCO3- were higher for rho1 GABAC receptors than alpha1beta2gamma2L GABAA receptors. 4. Expression of rho1 GABAC receptors in Xenopus oocytes and in HEK293 cells gave similar relative permeabilities for selected anions, suggesting that the expression system does not significantly alter permeation properties. 5. The pore diameter of the homomeric rho1 GABAC receptor expressed in oocytes was estimated to be 0.61 nm, which is somewhat larger than the 0.56 nm pore diameter estimated for alpha1beta2gamma2L GABAA receptors. 6. Homomeric rho1 GABA receptors expressed in oocytes had a single channel chord conductance of 0.65 +/- 0.04 pS (mean +/- s.e.m.) when the internal chloride concentration ([Cl-]i) was 20 mM. With a [Cl-]i of 100 mM, the single channel chord conductance was 1.59 +/- 0.24 pS. 7. The mean open time directly measured from 43 GABA-induced channel openings in six patches was 3. 2 +/- 0.8 s. The mean open time in the presence of 100 microM picrotoxin was 0.07 +/- 0.01 s (77 openings from 3 patches). 8. The differences observed in ionic permeabilities, pore size, single channel conductance and mean open time suggest that the rho1 homomeric receptor may not be the native retinal GABAC receptor reported previously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.