Abstract

Different ways to extract properties of excited states from time-dependent density functional theory (TD-DFT) calculations are compared to ab initio results obtained with the Equation of Motion Coupled Cluster approach. The recently proposed a posteriori Tamm–Dancoff approximation (ATDA) predicts the permanent dipole moments to be underestimated by 25% on average, close to the results of the relaxed density TD-DFT formalism, quadratic response formalism, and numerical energy derivatives, while the unrelaxed density approximation results are less accurate (40% overestimate). We also propose a correction for TD-DFT excitation energies, which are known to be problematic for charge transfer states. The static DFT energies evaluated on the relaxed densities of the excited states are found to be more accurate than TD-DFT excitation energies (RMSD is 0.7eV vs. 1.1eV, while maximum deviation is −1.0eV vs. −2.0eV). This validates ATDA for description of nonlinear optical properties of donor–acceptor molecules, exemplified by para-nitroaniline, and extends this method to improve the excitation energy predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.