Abstract

AbstractEffects of permafrost degradation on carbon (C) and nitrogen (N) cycling on the Qinghai‐Tibetan Plateau (QTP) have rarely been analyzed. This study used a revised process‐based biogeochemical model to quantify the effects in the region during the 21st century. We found that permafrost degradation would expose 0.61 ± 0.26 (mean ± SD) and 1.50 ± 0.15 Pg C of soil organic carbon under the representative concentration pathway (RCP) 4.5 and the RCP 8.5, respectively. Among them, more than 20% will be decomposed, enhancing heterotrophic respiration by 8.62 ± 4.51 (RCP 4.5) and 33.66 ± 14.03 (RCP 8.5) Tg C/yr in 2099. Deep soil N supply due to thawed permafrost is not accessible to plants, only stimulating net primary production by 7.15 ± 4.83 (RCP 4.5) and 24.27 ± 9.19 (RCP 8.5) Tg C/yr in 2099. As a result, the single effect of permafrost degradation would cumulatively weaken the regional C sink by 209.44 ± 137.49 (RCP 4.5) and 371.06 ± 151.70 (RCP 8.5) Tg C during 2020–2099. However, when factors of climate change, CO2 increasing and permafrost degradation are all considered, the permafrost region on the QTP would be a stronger C sink in the 21st century. Permafrost degradation has a greater influence on C balance of alpine meadows than alpine steppes on the QTP. The shallower active layer, higher soil C and N stocks, and wetter environment in alpine meadows are responsible for its stronger response to permafrost degradation. This study highlights that permafrost degradation could continue to release large amounts of C to the atmosphere irrespective of potentially more nitrogen available from deep soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.