Abstract
BackgroundPerivascular adipose tissue (PVAT) releases exosomes (EXOs) to regulate vascular homeostasis. PVAT-derived EXOs reduce macrophage foam cell formation, but the underlying molecular mechanism has yet to be fully elucidated. We hypothesize that PVAT release miRNA through EXOs and regulate the expression of cholesterol transporter of macrophages, thereby reducing foam cell formation.Methods and resultsThrough RT-qPCR, we identified that miR-382-5p, which was expressed at lower levels in PVAT-EXOs from coronary atherosclerotic heart disease patients than healthy individuals, was expressed at higher levels in wild-type C57BL/6 J mouse aortic PVAT-EXOs than in subcutaneous adipose tissue-derived EXOs. We explored macrophage lipid accumulation through oil red O staining, assessed cholesterol uptake and efflux, and verified cholesterol transporter expression. We found that transfection with a miR-382-5p inhibitor offset PVAT-EXO-related reductions in macrophage foam cell formation and increases in cholesterol efflux mediated by ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1). In addition, bone morphogenetic protein 4 (BMP4) pretreatment and si-peroxisome proliferator-activated receptor γ (PPARγ) transfection showed that BMP4-PPARγ participated in PVAT-EXO-mediated upregulation of the cholesterol efflux transporters ABCA1 and ABCG1.ConclusionsPVAT-EXOs reduce macrophage foam cell formation through miR-382-5p- and BMP4-PPARγ-mediated upregulation of the cholesterol efflux transporters ABCA1 and ABCG1. This finding suggests a promising strategy for the prevention and treatment of atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.