Abstract

A cracked structure made of two different elastic materials having a Griffith crack at the interface is analyzed when it is subjected to pure shear loading and ultrasonic loading. The waves generated by the applied load and the crack propagation resulted from the shear loading are investigated. Peri-ultrasound modeling tool is used for this analysis. A comparison between experimental results and numerical predictions shows a very good matching between the two. Furthermore, the increase in nonlinear ultrasonic response in presence of the interface crack could also be modeled by this technique. The computed results show that when the interface crack propagates, then it breaks the interface at one end of the crack and breaks the material with lower elastic modulus at the other end. The unique feature of this peridynamics-based modeling tool is that it gives a complete picture of the structural response when it is loaded—it shows how elastic waves propagate in the structure and are scattered by the crack, how the crack surfaces open up, and then how crack starts to propagate. Different modeling tools are not needed to model these various phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.