Abstract

The study explores to analyze the problem of peristaltic mechanism of tangent hyperbolic fluid through porous medium in an asymmetric channel. The two-dimensional peristaltic flow of hyperbolic tangent fluid in an asymmetric channel through porous medium is analyzed under the long wavelength and low Reynolds number assumptions. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series is used to obtain the solution for stream function, pressure gradient and pressure rise. The results were studied for different values of the physical parameters of the problem and illustrated graphically. It is observed that pressure rise diminishes for the larger values of Darcy number. Pressure gradient decreases for increment in Darcy number. Hyperbolic tangent fluid model anticipates the shear thinning phenomenon very accurately and are being used mostly in laboratory experiments and industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.