Abstract

In this paper, the effects of peristaltic transport with double-diffusive convection in nanofluids through an asymmetric channel with different waveforms is presented. Mathematical modeling for two-dimensional and two-directional flows of a Jeffery fluid model along with double-diffusive convection in nanofluids are given. Exact solutions are obtained for nanoparticle fraction field, concentration field, temperature field, stream functions, pressure gradient and pressure rise in terms of axial and transverse coordinates under the restrictions of long wavelength and low Reynolds number. With the help of computational and graphical results, the effects of Brownian motion, thermospheres, Dufour, Soret and Grashof numbers (thermal, concentration, nanoparticles) on peristaltic flow patterns with double-diffusive convection are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.