Abstract

Studies in insect gustation have a long history in general physiology, particularly with work on fly labellar and tarsal sensilla and in the general field of insect-plant interactions, where work on immature Lepidoptera and chrysomelid beetles has been prominent. Much more emphasis has been placed on the physiological characteristics of the sensory cells than on the central cellular mechanisms of taste processing. This is due to the fairly direct access for physiological experimentation presented by many taste sensilla and to the obvious importance of tastants in insect feeding and oviposition behaviour. In some of the insect models used for gustatory studies, advances have been made in understanding the basic morphology of the central neuropils involved in the first stages of taste processing. There is much less known about the physiology of interneurons involved. In this review, we concentrate on four insect models (Manduca sexta, Drosophila melanogaster, Neobellieria bullata (and other large flies), and Apis mellifera) to summarize morphological knowledge of peripheral and central aspects of insect gustation. Our views of current interpretations of available data are discussed and some important areas for future research are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.