Abstract
Following Jacquet, Lapid and Rogawski, we define a regularized period of an automorphic form on $\text{GL}_{n+1}\times \text{GL}_{n}$ along the diagonal subgroup $\text{GL}_{n}$ and express it in terms of the Rankin–Selberg integral of Jacquet, Piatetski-Shapiro and Shalika. This extends the theory of Rankin–Selberg integrals to all automorphic forms on $\text{GL}_{n+1}\times \text{GL}_{n}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.