Abstract
In this two-part paper results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented. The main part of the experimental investigations was performed using Laser-Doppler-Anemometry. Results of the flow field at several spanwise positions between midspan and rotor blade tip will be discussed. In addition time-resolving pressure sensors at midspan of the rotor blades provide information about the unsteady profile pressure distribution. In part II of the paper the flow field in the rotor blade tip region will be discussed. The experimental results reveal a strong periodical interaction of the incoming stator wakes and the rotor blade tip clearance vortices. Consequently, in the rotor frame of reference the tip clearance vortices are periodical with the stator blade passing frequency. Due to the wakes the tip clearance vortices are separated into different segments. Along the mean vortex trajectory these parts can be characterised by alternating patches of higher and lower velocity and flow turning or subsequent counterrotating vortex pairs. These flow patterns move downstream along the tip clearance vortex path in time. As a result of the wake influence the orientation and extension of the tip clearance vortices as well as the flow blockage periodically vary in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.