Abstract
An investigation is made into the evolution, from a sinusoidal initial wave train, of long periodic waves of small but finite amplitude propagating in one direction over water in a uniform channel. The spatially periodic surface displacement is expanded in a Fourier series with time-dependent coefficients. Equations for the Fourier coefficients are derived from three sources, namely the Korteweg–de Vries equation, the regularized long-wave equation proposed by Benjamin, Bona & Mahony (1972) and the relevant nonlinear boundary-value problem for Laplace's equation. Solutions are found by analytical and by numerical methods, and the three models of the system are compared. The surface displacement is found to take the form of an almost linear superposition of wave trains of the same wavelength as the initial wave train.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.