Abstract

We develop a singular perturbation technique to study the existence of periodic traveling wave solutions with large wave speed for a class of reaction-diffusion equations with time delay and non-local response. Unlike the classical singular perturbation method, our approach is based on a transformation of the differential equations to integral equations in a Banach space that reduces the singular perturbation problem to a regular perturbation problem. The periodic traveling wave solutions then are obtained by the use of Liapunov-Schmidt method and a generalized implicit function theorem. The general result obtained has been applied to a non-local reaction-diffusion equation derived from an age-structured population model with a logistic type of birth function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.