Abstract

Stationary solutions in the form of small-scale periodic cells in a plane perpendicular to the magnetic field are obtained in the framework of two-fluid magnetohydrodynamics. The solutions are established as a result of the development of thermal instability and represent a superposition of standing temperature waves. In solving the problem, an expression is used for a generalized heat source (including heating and radiative cooling) that forms a temperature transition region between the chromosphere and corona.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.