Abstract
The master stability function is a robust and useful tool for determining the conditions of synchronization stability in a network of coupled systems. While a comprehensive classification exists in the case in which the nodes are chaotic dynamical systems, its application to periodic systems has been less explored. By studying several well-known periodic systems, we establish a comprehensive framework to understand and classify their properties of synchronizability. This allows us to define five distinct classes of synchronization stability, including some that are unique to periodic systems. Specifically, in periodic systems, the master stability function vanishes at the origin, and it can therefore display behavioral classes that are not achievable in chaotic systems, where it starts, instead, at a strictly positive value. Moreover, our results challenge the widely held belief that periodic systems are easily put in a stable synchronous state, showing, instead, the common occurrence of a lower threshold for synchronization stability. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.