Abstract

For a tridiagonal two-layer real six-neuron model, the Hopf bifurcation was investigated by studying the eigenvalue equations of the related linear system in the literature. In the present paper, we extend this two-layer real six-neuron network model into a complex-valued delayed network model. Based on the mathematical analysis method, some sufficient conditions to guarantee the existence of periodic oscillatory solutions are established under the assumption that the activation function can be separated into its real and imaginary parts. Our sufficient conditions obtained by the mathematical analysis method in this paper are simpler than those obtained by the Hopf bifurcation method. Computer simulation is provided to illustrate the correctness of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.