Abstract
In this paper the properties of Rédei rational functions are used to derive rational approximations for square roots and both Newton and Padé approximations are given as particular cases. As a consequence, such approximations can be derived directly by power matrices. Moreover, Rédei rational functions are introduced as convergents of particular periodic continued fractions and are applied for approximating square roots in the field of p-adic numbers and to study periodic representations. Using the results over the real numbers, we show how to construct periodic continued fractions and approximations of square roots which are simultaneously valid in the real and in the p-adic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.