Abstract

AbstractQuadratic nonlinear photonic crystals are materials in which the second order susceptibility χ(2) is spatially modulated while the linear susceptibility remains constant. These structures are significantly different than the more common photonic crystals, in which the linear susceptibility is modulated. Nonlinear processes in nonlinear photonic crystals are governed by the phase matching requirements, which are determined by the reciprocal lattice of these crystals. Therefore, the modulation of the nonlinear susceptibility enables to engineer the spatial and spectral response in various three‐wave mixing processes. It enables to support the efficient generation of new optical frequencies at multiple directions. We analyze three wave mixing processes in nonlinear photonic crystals in which the modulation is either periodic, quasi‐periodic, radially symmetric or even random. We discuss both one‐dimensional and two‐dimensional modulations. In addition to harmonic generations, we outline several new possibilities for all‐optical control of the spatial and polarization properties of optical beams in specially designed nonlinear photonic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.