Abstract

We present an extensive experimental campaign dedicated to the identification of coherent trajectory patterns owing to flow occurring in tidal environments, characterized by a tidal inlet and a channel with lateral tidal flats. Single and multiple harmonics tides are here reproduced on a large-scale physical model. The study of the large scale macro-vortices, generated by vortex shedding during the flood phase from the inlet barrier, is performed employing the Lagrangian Average Vorticity Deviation (LAVD). The presence of large-scale vortices with a complex dynamics within a tidal period suggested a deeper understanding on the possible environmental implications in terms of transport connections or barriers. Finite Time Lyapunov Exponents are employed in order to recognize stable and unstable manifolds within the flow that are defined as preferred paths along which particles are repelled (forward integration) or attracted (backward).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.