Abstract

In recent years, event-triggered control has emerged as a promising strategy for addressing resource constraints in networked control systems (NCSs), such as limited life-time of battery capacity. This paper explores the development of a periodic event-triggered controller through a model-free design, assuming unknown plant dynamics. The design of the event-triggered controller employs an emulation-based approach, which is divided into solving two sub-problems: the problem for designing parameters for the time-triggered (periodic) control law, and the problem for designing parameters for the event-triggered condition. In particular, both problems will be solved through the usage of two distinct Bayesian optimization algorithms. The first problem is addressed by adapting basic Bayesian optimization to include network utilization by considering the number of communication time steps during optimization. The second problem employs constrained Bayesian optimization to incorporate explicit performance constraints within the optimization process. A numerical example is provided to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.