Abstract

Fractional-order calculus is more competent than integer-order one when modeling systems with properties of nonlocality and memory effect. And many real world problems related to uncertainties can be modeled with stochastic fractional-order systems with random parameters. Therefore, it is necessary to analyze the dynamical behaviors in those systems concerning both memory and uncertainties. The period-doubling bifurcation of stochastic fractional-order Duffing (SFOD for short) system with a bounded random parameter subject to harmonic excitation is studied in this paper. Firstly, Chebyshev polynomial approximation in conjunction with the predictor-corrector approach is used to numerically solve the SFOD system that can be reduced to the equivalent deterministic system. Then, the global and local analysis of period-doubling bifurcation are presented, respectively. It is shown that both the fractional-order and the intensity of the random parameter can be taken as bifurcation parameters, which are peculiar to the stochastic fractional-order system, comparing with the stochastic integer-order system or the deterministic fractional-order system. Moreover, the Chebyshev polynomial approximation is proved to be an effective approach for studying the period-doubling bifurcation of the SFOD system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.