Abstract
Little is known about the neural bases of the reduced auditory and cortical processing speeds that have been recorded in language-impaired, autistic, schizophrenic, and other disabled human populations. Although there is strong evidence for genetic contributions to etiologies, epigenetic factors such as perinatal anoxia (PA) have been argued to be contributors, or causal, in a significant proportion of cases. In this article, we explored the consequences of PA on this elementary aspect of auditory behavior and on auditory system function in rats that were briefly perinatally anoxic. PA rats had increased acoustic thresholds and reduced processing efficiencies recorded in an auditory behavioral task. These rats had modestly increased interpeak intervals in their auditory brainstem responses, and substantially longer latencies in poststimulus time histogram responses recorded in the primary auditory cortex. The latter were associated with degraded primary auditory cortex receptive fields and a disrupted tonotopy. These processing deficits are consistent with the parallel behavioral and physiological deficits recorded in children and adults with a history of language-learning impairment and autism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.