Abstract

In this study, a new approach for predicting damage and specific failure modes in laminated fiber reinforced composites is presented. The new method is based on the peridynamic theory and models individual plies, and represents fiber and matrix materials in each ply explicitly. These features enable analysis of laminates with arbitrary fiber orientation in a convenient manner. Additionally, a new failure mode identification algorithm has been developed and implemented. Instead of the conventional peridynamic damage parameter, the new algorithm works with individual broken bonds, which makes identification of different failure modes including matrix cracking, fiber breakage and delamination straight-forward and unambiguous. The new peridynamic approach is demonstrated by considering low velocity impact damage on composite laminates with and without translaminar reinforcements. The translaminar reinforcement technique considered in this study is z-pinning; two different geometric configurations of z-pins are explored. The impact testing and the post-impact non-destructive evaluations with ultrasonic c-scans are performed at the Air Force Research Laboratory to characterize of the delaminations. The impact tests on different samples are simulated using the current peridynamic approach. The predicted impact damages are compared against the experimental measurements. The new approach is shown to capture low velocity impact damage both quantitatively and qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.