Abstract

In this paper, we present two control strategies for applications to civil engineering structures, referred to as the generalized H 2 control and L 1 control, respectively. Both control strategies are capable of addressing the performance-based design of structures, in the sense that the design requirements for the peak response quantities, such as peak interstory drifts, peak shear forces, peak floor accelerations, etc., can be satisfied. Likewise, these two controllers minimize the upper bound of the peak response of the controlled output vector. The design procedures for these two controllers are formulated in the framework of linear matrix inequalities (LMIs) so that the LMI toolbox in MATLAB can be used effectively and conveniently for the controller design. These control strategies are applied herein to the wind-excited benchmark problem to demonstrate their applicability to practical problems as well as their control performances. Simulation results illustrate that the performances of both the generalized H 2 controller and the L 1 controller are very plausible in comparison with the LQG control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.