Abstract
Time-delay estimation has countless applications in ultrasound medical imaging. Previously, we proposed a new time-delay estimation algorithm, which was based on the summation of the sign function to compute the time-delay estimate (Shaswary et al., 2015). We reported that the proposed algorithm performs similar to normalized cross-correlation (NCC) and sum squared differences (SSD) algorithms, even though it was significantly more computationally efficient. In this paper, we study the performance of the proposed algorithm using statistical analysis and image quality analysis in ultrasound elastography imaging. Field II simulation software was used for generation of ultrasound radio frequency (RF) echo signals for statistical analysis, and a clinical ultrasound scanner (Sonix® RP scanner, Ultrasonix Medical Corp., Richmond, BC, Canada) was used to scan a commercial ultrasound elastography tissue-mimicking phantom for image quality analysis. The statistical analysis results confirmed that, in overall, the proposed algorithm has similar performance compared to NCC and SSD algorithms. The image quality analysis results indicated that the proposed algorithm produces strain images with marginally higher signal-to-noise and contrast-to-noise ratios compared to NCC and SSD algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.