Abstract
Iron coke has emerged as a promising raw material for low‐carbon ironmaking. However, the structure and properties of iron coke are still obstacles to practical application in blast furnaces, especially the strength of iron coke. Herein, investigations on the preparation and properties of iron coke are reviewed and an integrated system for the performance optimization and efficient utilization of iron coke is proposed. First, the characteristics of different preparation processes for iron coke are compared; then the advantages and limitations of the three processes are summarized. Afterward, the evolution mechanism of iron coke strength and the catalytic mechanism of Fe on the gasification reaction of iron coke are explored in depth. In addition, the coupling mechanism of iron coke gasification and iron ore reduction is analyzed and discussed. The influence of iron coke on the melting–dropping properties of blast furnace charge and the mathematical simulation of using iron coke in the blast furnace are analyzed and summarized. Finally, a comprehensive strategy for the performance optimization of iron coke and its efficient application in the blast furnace is proposed, in which the sequence slicing 3D reconstruction method is applied to analyze the relationship between microstructure and performance of iron coke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.