Abstract

The IEF-MST continuum solvation model is used to predict the hydration free energies of a set of 63 multifunctional compounds very recently compiled as a blind test (denoted SAMPL1) for computational solvation methods (Guthrie, J. P. J. Phys. Chem. B 2009, 113, 4501). Computations were performed using the IEF-MST versions parametrized at both HF/6-31G(d) and B3LYP/6-31G(d) levels. For direct comparison with other methods, computations were performed using the frozen geometries provided with the SAMPL1 data set, as well as the gas phase optimized geometries following the implementation of the IEF-MST model. Comparison with experimental data yields a root-mean square deviation for the whole set of compounds of 2.7 and 2.4 kcal/mol at both HF and B3LYP levels. The agreement between IEF-MST and experimental data is then quite remarkable, especially considering the reduced set of training compounds (72 data in water) used in the parametrization of the IEF-MST method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.