Abstract

Abstract Molecular neuromorphic devices are composed of a random and extremely dense network of single-walled carbon nanotubes (SWNTs) complexed with polyoxometalate (POM). Such devices are expected to have the rudimentary ability of reservoir computing (RC), which utilizes signal response dynamics and a certain degree of network complexity. In this study, we performed RC using multiple signals collected from a SWNT/POM random network. The signals showed a nonlinear response with wide diversity originating from the network complexity. The performance of RC was evaluated for various tasks such as waveform reconstruction, a nonlinear autoregressive model, and memory capacity. The obtained results indicated its high capability as a nonlinear dynamical system, capable of information processing incorporated into edge computing in future technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.