Abstract

From the perspective of linear algebra, the performance of super-resolution reconstruction (SR) depends on the conditioning of the linear system characterizing the degradation model. This is analyzed in the Fourier domain using the perturbation theory. By proposing a new SR error bound in terms of the point spread function (PSF), we reveal that the blur function dominates the condition number (CN) of degradation matrix, and the advantage of non-integer magnification factors (MFs) over the integer ones comes from sampling zero crossings of the DFT of the PSF. We also explore the effect of regularization by integrating it into the SR model, and investigate the influence of the optimal regularization parameter. A tighter error bound is derived given the optimal regularization parameter. Two curves of error bounds vs. MFs are presented, and verified by processing real images. It explains that with proper regularization, SR at the integer MFs is still valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.