Abstract
The characteristics of polyimide film hypervelocity impacted (HVI) by micro flyer are investigated though experimental and numerical methods. Using the laser driven flyer (LDF) method combined with the technique of scanning electron microscopy (SEM) and explicit dynamics numerical algorithm, the fracture morphology and detailed mechanical responses of polyimide film, both in the impact and non–impact zones, are captured; and a dynamic fracture strain criteria, combing temperature and strain rate, is presented. A parametric study on the performance of polyimide film is implemented and the influence of the factors, including the impact velocity, film thickness, strain rate constant and pre–stress, are assessed. The research reveals that polyimide film exits two failure modes, i.e. ductile punching and brittle cracks. Polyimide materials in the impact zone have experienced a high temperature (>Tg = 685 K), ultrahigh strain rate (108∼109) and plastic state; while in the non–impact zone, it is normal temperature (293–295 K), high strain rate (105∼106) and elastic state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.