Abstract

Bottom-contact organic field-effect transistors (OFETs) were fabricated using a polymer gate insulator cross-linked poly(4-vinyl phenol) with regioregular poly(3-hexylthiophene) (RR-P3HT) as an active layer from different organic solvents. With this polymer dielectric, a field-effect mobility of 0.084±0.006cm2V−1s−1 was obtained. Solvents and interfacial properties have pronounced effects in determining the crystallinity and device performance of RR-P3HT on the polymer gate layer. Morphology correlation with the charge carrier mobility of RR-P3HT OFETs is investigated. Large nanoscale crystalline island densities of this polymer play an important role in the high charge carrier mobility of devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.