Abstract

Impulsive noise bursts in communication systems are traditionally handled by incorporating in the receiver a limiter which clips the received signal before integration. An empirical justification for this procedure is that it generally causes the signal-to-noise ratio to increase. Recently, very accurate models of impulsive noise were presented, based on the theory of symmetric /spl alpha/-stable probability density functions. We examine the performance of optimum receivers, designed to detect signals embedded in impulsive noise which is modeled as an infinite variance symmetric /spl alpha/-stable process, and compare it against the performance of several suboptimum receivers. As a measure of receiver performance, we compute an asymptotic expression for the probability of error for each receiver and compare it to the probability of error calculated by extensive Monte-Carlo simulation. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.