Abstract

Abstract. Offline advection schemes allow for low-computational-cost simulations using existing model output. This study presents the approach and assessment for passive offline tracer advection within the Regional Ocean Modeling System (ROMS). An advantage of running the code within ROMS itself is consistency in the numerics on- and offline. We find that the offline tracer model is robust: after about 14 d of simulation (almost 60 units of time normalized by the advection timescale), the skill score comparing offline output to the online simulation using the TS_U3HADVECTION and TS_C4VADVECTION (third-order upstream horizontal advection and fourth-order centered vertical advection) tracer advection schemes is 99.6 % accurate for an offline time step 20 times larger than the online time step as well as online output saved with a period below the advection timescale. For the MPDATA tracer advection scheme, accuracy is more variable with the offline time step and forcing input frequency choices, but it is still over 99 % for many reasonable choices. Both schemes are conservative. Important factors for maintaining high offline accuracy are outputting from the online simulation often enough to resolve the advection timescale, forcing offline using realistic vertical salinity diffusivity values from the online simulation, and using double precision to save results.

Highlights

  • The ability to integrate Eulerian tracer fields offline or separate from the online original full simulation is attractive because of the improved computational efficiency

  • Online simulations were run with two tracer advection schemes: MPDATA, and TS_U3HADVECTION and TS_C4VADVECTION

  • This paper presents a description and evaluation of an offline tracer advection model developed within Regional Ocean Modeling System (ROMS)

Read more

Summary

Introduction

The ability to integrate Eulerian tracer fields offline or separate from the online original full simulation is attractive because of the improved computational efficiency. Once an online simulation has been run, any number of offline simulations can be run, forced by the stored online model output, using a larger time step, and only needing to integrate the transport field itself. This allows for many simulations when, in contrast, fewer would have been possible with the online simulation. This study presents the development and assessment of an offline passive tracer advection model that is part of the Regional Ocean Modeling System (ROMS), version 904, in the Coupled Ocean– Atmosphere–Wave–Sediment Transport (COAWST) modeling system (Shchepetkin and McWilliams, 2005; Warner et al, 2010).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.