Abstract
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers commonly encounter. To address these issues, one could use model fit and selection indices to detect misspecified Bayesian PGMs, and should give care to the potential impact of missing data on model evaluation. Here we conducted a simulation study to examine the impact of model misspecification and missing data on the performance of Bayesian model fit and selection indices (PPP-value, BCFI, BTLI, BRMSEA, BIC, and DIC), with an additional focus on prior sensitivity. Results indicated that (a) increasing the degree of model misspecification and amount of missing data aggravated the performance of indices in detecting misfit, and (b) different prior specifications had negligible impact on model assessment. We provide practical guidelines for researchers to facilitate effective implementation of Bayesian PGMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.