Abstract

Cu interconnects are used in semiconductor devices and their dimensions are downscaled markedly. Cu interconnects are fabricated by a damascene process, and it becomes difficult to fill Cu into trenches and vias structures by electroplating below the 20 nm feature size. We evaluated the process integration for Cu interconnects using a Co wetting layer by chemical vapor deposition (CVD), a Cu seed by magnetic-field-assisted ionized sputtering (MFIS) and a Cu reflow technique. The properties of a CVD-Co film, such as composition, resistivity, step coverage, and adhesion between Cu and Co, were investigated. By using CVD-Co as the wetting layer, the properties of Cu gap filling in a trench structure were improved, and the filling of Cu into a 14-nm-wide trench structure was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.