Abstract

Summary Flash-floods that occur in Mediterranean regions result in significant casualties and economic impacts. Remote image-based techniques such as Large-Scale Particle Image Velocimetry (LSPIV) offer an opportunity to improve the accuracy of flow rate measurements during such events, by measuring the surface flow velocities. During recent floods of the Ardeche river, LSPIV performance tests were conducted at the Sauze–Saint Martin gauging station without adding tracers. The rating curve is well documented, with gauged discharge ranging from 4.8 m 3 s −1 to 2700 m 3 s −1 , i.e., mean velocity from 0.02 m s −1 to 2.9 m s −1 . Mobile LSPIV measurements were carried out using a telescopic mast with a remotely-controlled platform equipped with a video camera. Also, LSPIV measurements were performed using the images recorded by a fixed camera. A specific attention was paid to the hydraulic assumptions made for computing the river discharge from the LSPIV surface velocity measurements. Simple solutions for interpolating and extrapolating missing or poor-quality velocity measurements, especially in the image far-field, were applied. Theoretical considerations on the depth-average velocity to surface velocity ratio (or velocity coefficient) variability supported the analysis of velocity profiles established from available gauging datasets, from which a velocity coefficient value of 0.90 (standard deviation 0.05) was derived. For a discharge of 300 m 3 s −1 , LSPIV velocities throughout the river cross-section were found to be in good agreement (±10%) with concurrent measurements by Doppler profiler (ADCP). For discharges ranging from 300 to 2500 m 3 s −1 , LSPIV discharges usually were in acceptable agreement (

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.