Abstract

In this study, a granular zirconium-iron oxide (GZI) was successfully prepared using the extrusion method, and its defluoridation performance was systematically evaluated. The GZI was composed of amorphous and nano-scale oxide particles. The Zr and Fe were evenly distributed on its surface, with a Zr/Fe molar ratio of ∼2.3. The granular adsorbent was porous with high permeability potential. Moreover, it had excellent mechanical stability and high crushing strength, which ensured less material breakage and mass loss in practical use. In batch tests, the GZI showed a high adsorption capacity of 9.80 mg/g under an equilibrium concentration of 10 mg/L at pH 7.0, which outperformed many other reported granular adsorbents. The GZI performed well over a wide pH range, of 3.5–8.0, and especially well at pH 6.0–8.0, which was the preferred range for actual application. Fluoride adsorption on GZI followed pseudo-second-order kinetics and could be well described by the Freundlich equilibrium model. With the exception of HCO 3 −, other co-existing anions and HA did not evidently inhibit fluoride removal by GZI when considering their real concentrations in natural groundwater, which showed that GZI had a high selectivity for fluoride. In column tests using real groundwater as influent, about 370, 239 and 128 bed volumes (BVs) of groundwater were treated before breakthrough was reached under space velocities (SVs) of 0.5, 1 and 3 h −1, respectively. Additionally, the toxicity characteristic leaching procedure (TCLP) results suggested that the spent GZI was inert and could be safely disposed of in landfill. In conclusion, this granular adsorbent showed high potential for fluoride removal from real groundwater, due to its high performance and physical–chemical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.