Abstract

We investigate how performance (i.e. activity of the nodes and their subsequent synchronization) of excitable small-world networks depends on network topology. Network elements are described by Bonhoeffer-van der Pol-FitzHugh-Nagumo oscillators assumed to be close to the oscillating threshold. Global oscillations are induced by introducing a small amount of diversity. In homogeneous networks, it is found that the system performance is mainly determined by the average path length, no matter what the local properties are. The network undergoes a transition from low to high activity regimes at a critical path length. This transition, also found in regular networks, is shown to be caused by the dependence of the critical coupling strength between network units on the average path length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.