Abstract

Hypervelocity impacts on spacecraft in low earth orbit by meteoroids and space debris poses a threat to space missions, and the use of a shield can significantly decrease the probability of a catastrophic failure. Tests have identified that metallic foams have a good shielding performance against hypervelocity impact by micro-meteoroids and orbital debris. A metal-foam stuffed Whipple shield was presented under the concept of light-weight shield structure. A meso-structure model of geometry for metallic foams was set up simulating their manufacturing process and validated by comparison with experimental results using own SPH code. Three base materials of foam, including Al 7075-T651, Ti and Al ZL102, were researched for their performances as stuff of shield by means of numerical simulation. The results indicated that different base materials show the best shield performance at different impact speeds with other conditions the same. The foam of Al ZL102 stuffed can cause the strongest radial dispersion of the secondary debris cloud and is more likely to provide the best shield performance, which is proved at the higher part of the speed range investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.