Abstract

Multipath propagation is one of the most difficult error sources to compensate in global navigation satellite systems due to its environment-specific nature. In order to gain a better understanding of its impact on the received signal, the establishment of a theoretical performance limit can be of great assistance. In this paper, we derive the Cramer Rao lower bounds (CRLBs), where in one case, the unknown parameter vector corresponds to any of the three multipath signal parameters of carrier phase, code delay, and amplitude, and in the second case, all possible combinations of joint parameter estimation are considered. Furthermore, we study how various channel parameters affect the computed CRLBs, and we use these bounds to compare the performance of three deconvolution methods: least squares, minimum mean square error, and projection onto convex space. In all our simulations, we employ CBOC modulation, which is the one selected for future Galileo E1 signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.