Abstract
An entrained-flow system has been designed and constructed to simulate in-flight mercury (Hg) capture by sorbent injection in ducts of coal-fired utility plants. The test conditions of 1.2-sec residence time, 140 °C gas temperature, 6.7 m/sec (22 ft/sec) gas velocity, and 0–0.24 g/m3 (0–15 lbs of sorbent per 1 million actual cubic feet of flue gas [lb/MMacf]) sorbent injection rates were chosen to simulate conditions in the ducts. Four kinds of sorbents were used in this study. Darco Hg-LH served as a benchmark sorbent with which Hg control capability of other sorbents could be compared. Also, Darco-FGD was used as a representative raw activated carbon sorbent. Two different copper chloride-impregnated sorbents were developed in our laboratory and tested in the entrained-flow system to examine the possibility of using these sorbents at coal-fired power plants. The test results showed that one of the copper chloride sorbents has remarkable elemental mercury (Hg0) oxidation capability, and the other sorbent demonstrated a better performance in Hg removal than Darco Hg-LH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.