Abstract

AbstractGroundwater at most underground storage tank (UST) spills sites in Kansas contains both methyl tertiary butyl ethylene (MTBE) and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, air sparging, and excavation are the most common treatment technologies in Kansas. To compare the relative performance of these conventional remedial technologies for treating MTBE as compared to benzene, 66 sites in the Kansas UST Trust Fund were identified that had initial concentrations of both MTBE and benzene above the reporting limit of 1 μg/L, and that had at least two rounds of analytical data. Sites were excluded from the comparison if the monitoring wells had free product. Of the 66 sites, 15 had met the clean‐up goal for benzene, and 50 had met the goal for MTBE. The extent of treatment for MTBE and benzene was calculated as the ratio of the highest concentration in any well at the site in the most recent round of sampling to the maximum concentration in any well at the site in the previous rounds of sampling. The extent of treatment was greater for MTBE (statistically significant at p = 0.032). The geometric mean of the extent of treatment in the 66 sites was 0.057 for MTBE, compared to 0.14 for benzene. In Kansas, conventional technologies removed MTBE from the source areas of groundwater plumes at least as effectively as they removed benzene. © 2003 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.