Abstract
Polycapillary halflenses are widely used to focus X-ray radiation onto a small spot. Additionally they can reduce the field of view of a semiconductor detector when placed in front of one. In 3D micro X-ray fluorescence spectroscopy (3D Micro-XRF) with synchrotron radiation, two polycapillary halflenses are used in a confocal geometry. Up until now, characterization measurements in the focal plane have only been performed in the case of the lens focusing parallel radiation. Assumptions have been made, that in the other case, when isotropic radiation from a spot source is transported to a detector, the acceptance distribution in the focal plane is also Gaussian. We performed measurements with an electron beam as well as a proton beam which confirm this assumption. In addition, a comparison between measurements in collecting and focusing mode show differences in spot size and transmission. These differences exemplify the fact that there is not one global spot size or transmission function of a polycapillary halflens. Illumination and divergence effects can alter both characteristic lens parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.