Abstract
BackgroundThe rapid diagnostic test (RDT) has been adopted in contemporary malaria control and management programmes around the world as it represents a fast and apt alternative for malaria diagnosis in a resource-limited setting. This study assessed the performance of a HRP-2/pLDH based RDT (Parascreen® Pan/Pf) in a laboratory setting utilizing clinical samples obtained from the field.MethodsWhole blood samples were obtained from febrile patients referred for malaria diagnosis by clinicians from two different Upazila Health Complexes (UHCs) located near the Bangladesh-India and Bangladesh-Myanmar border where malaria is endemic. RDT was performed on archived samples and sensitivity and specificity evaluated with expert microscopy (EM) and quantitative PCR (qPCR).ResultsA total of 327 clinical samples were made available for the study, of which 153 were Plasmodium falciparum-positive and 54 were Plasmodium vivax-positive. In comparison with EM, for P. falciparum malaria, the RDT had sensitivity: 96.0% (95% CI, 91.2-98.3) and specificity: 98.2% (95% CI, 94.6-99.5) and for P. vivax, sensitivity: 90.7% (95% CI, 78.9-96.5) and specificity: 98.9% (95% CI, 96.5-99.7). Comparison with qPCR showed, for P. falciparum malaria, sensitivity: 95.4% (95% CI, 90.5-98.0) and specificity: 98.8% (95% CI, 95.4-99.7) and for P. vivax malaria, sensitivity: 89.0% (95% CI,77.0-95.4) and specificity: 98.8% (95% CI, 96.5-99.7). Sensitivity varied according to different parasitaemia for falciparum and vivax malaria diagnosis.ConclusionParascreen® Pan/Pf Rapid test for malaria showed acceptable sensitivity and specificity in border belt endemic areas of Bangladesh when compared with EM and qPCR.
Highlights
The rapid diagnostic test (RDT) has been adopted in contemporary malaria control and management programmes around the world as it represents a fast and apt alternative for malaria diagnosis in a resource-limited setting
expert microscopy (EM) being the reference standard, Parascreen had the following results, for any kind of malaria detection, sensitivity: 97.1% and specificity: 99.1%; for P. falciparum malaria detection, sensitivity: 96.0% and specificity: 98.2%
When quantitative polymerase chain reaction (PCR) (qPCR) was used as the reference standard, Parascreen had the following results for any kind of malaria detection, sensitivity: 97.1% and specificity: 100% (96.1-100.0); for P. falciparum malaria detection, sensitivity: 95.4% and specificity: 98.8% and for P. vivax malaria detection, sensitivity: 89.0% and specificity: 98.8%
Summary
The rapid diagnostic test (RDT) has been adopted in contemporary malaria control and management programmes around the world as it represents a fast and apt alternative for malaria diagnosis in a resource-limited setting. After being introduced in the early 1990s, rapid diagnostic tests (RDTs) have become an attractive alternative to the above-mentioned methods in a resource-limited setting for malaria diagnostics. The antigen-based RDTs detect specific antigens produced by malaria parasites by reaction with bound antibodies on an absorbent nitrocellulose membrane. Two-band tests either detect only one species (Plasmodium falciparum), usually by detecting histidine-rich protein 2 (HRP2), or detect any of the four most common malaria parasites (P. falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale), typically by detecting pan-Plasmodium-specific lactate dehydrogenase (pLDH), while three-band tests detect both the P. falciparum-specific antigen HRP2 and the pLDH or any one species specific LDH (mostly P. vivax). The third band is the test control band [1,5,11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.