Abstract

Conventional proton exchange membrane (PEM) fuel cell systems suffer from requiring high purity hydrogen, necessitating a costly on-board hydrogen storage tank to be incorporated into the overall system design. One method to overcome this barrier is to use an on-board reforming system fueled by some sort of hydrocarbon. Unfortunately though, most fuel reforming processes generate significant amounts of impurities, such as CO and CO2, requiring a costly and complex upfront reforming system that is unwieldy for a practical system. High temperature PEM fuel cells based on acid doped polybenzimidazole (PBI), are capable of operating on lower quality reformed hydrogen, allowing for a simplified on-board fuel reforming system design to be envisioned. Advances in high temperature PEM fuel cells have progressed to the point where they are now a commercially viable technology. However, there remains a lack of published literature on the performance of HT-PEMFCs operating on common reformate effluent compositions consisting primarily of H2, CO, CO2, and N2. In this work, the performance of PBI-based HT-PEMFCs are evaluated under simulated reformate compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.