Abstract

A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 104. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h−1 m−2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h−2 m−2 bar−1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m3 day−1 OMW-2 on average, 47.4 m2 required membrane area and 0.87 € m−3 total costs for the RO process were estimated.

Highlights

  • Two principal wastewater streams are nowadays by-produced in olive mills working with the two-phase system during the production process of olive oil: olives washing wastewater (OWW), which is produced during the olive-fruit washing procedure in the washing machines, and olive oil washing wastewater (OOW), which is derived in the olive oil extraction process during the washing of the olive oil in the vertical centrifuges (Figure 1)

  • The objective of this work was to close the loop of the industrial production process of an olive mill working with the two-phase extraction procedure in Baeza (Jaén, Spain)

  • Performance modelization and preliminary cost analysis of a final reverse osmosis (RO) treatment was examined on a pilot scale for ulterior purification of the effluents generated by olive oil factories working with the two-phase olive oil extraction procedure

Read more

Summary

Introduction

Two principal wastewater streams are nowadays by-produced in olive mills working with the two-phase system during the production process of olive oil: olives washing wastewater (OWW), which is produced during the olive-fruit washing procedure in the washing machines, and olive oil washing wastewater (OOW), which is derived in the olive oil extraction process during the washing of the olive oil in the vertical centrifuges (Figure 1). The pollutants load of these effluents is extremely variable, owing to the extraction process, and to edaphoclimatic and cultivation parameters, the type of the olives, their quality and maturity, and other factors [1,3]. These factors, in addition to small size and widespread geographical dispersion of olive oil factories, establish important difficulties for the management of these hazard effluents. Within this context, advanced operation processes (AOPs) are required for the depuration of these bio-refractory wastewaters [4,5,6,7,8,9,10,11,12,13,14,15,16]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.