Abstract

In this paper, for the first time, a probability-aided maximum-likelihood sequence detector (PMLSD) is experimentally investigated through a 64-GBaud probabilistic shaped 16-ary quadrature amplitude modulation (PS-16QAM) transmission experiment. In order to relax the impacts of PS technology on the decision module, a PMLSD decision scheme is investigated by modifying the decision criterion of maximum-likelihood sequence detector (MLSD) correctly. Meanwhile, a symbol-wise probability-aided maximum a posteriori probability (PMAP) scheme is also demonstrated for comparison. The results show that the PMLSD scheme outperforms the direct decision scheme about 1.0-dB optical signal to noise ratio (OSNR) sensitivity. Compared with symbol-wise PMAP scheme, PMLSD scheme can effectively relax the impacts of PS technology on the decision module and a more than 0.8-dB improvement in terms of OSNR sensitivity in back-to-back (B2B) case is obtained. Finally, we successfully transmit the PS-16QAM signals over a 2400-km fiber link with a bit error ratio (BER) lower than 1.00×10-3 by adopting the PMLSD scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.