Abstract

The purpose of this study was to improve the performance of a small gamma camera, utilizing a NaI(Tl) plate and a 5″ position sensitive PMT. We attempted to build a NaI(Tl) plate crystal system which retained all its advantages, while at the same time integrating some of the advantages inherent in an array-type scintillation crystal system. Flood images were obtained with a lead hole mask, and position mapping was performed by detecting hole positions in the flood image. Energy calibration was performed using the energy spectra obtained from each hole position. Flood correction was performed using a uniformity correction table containing the relative efficiency of each image element. The spatial resolution was improved about 16% after correction at the centre field of view. Resolution deterioration at the outer field of view (OFOV) was considerably ameliorated, from 6.7 mm to 3.2 mm after correction. The sensitivity at the OFOV was also increased after correction, from 0.7 cps µCi−1 to 2.0 cps µCi−1. The correction also improved uniformity, from 5.2% to 2.1%, and linearity, from 0.5 mm to 0 mm. The results of this study indicate that the revised correction method can be employed to considerably improve the performance of a small gamma camera using a NaI(Tl) plate-type crystal. This method also provides high spatial resolution and linearity, like array-type crystals do, while retaining the specific advantages of plate-type crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.