Abstract

AbstractIn this paper, a new optimal reduced order fractionalized PID (ROFPID) controller based on the Harris Hawks Optimization Algorithm (HHOA) is proposed for aircraft pitch angle control. Statistical tests, analysis of the index of performance, and disturbance rejection, as well as transient and frequency responses, were all used to validate the effectiveness of the proposed approach. The performance of the proposed HHOA‐ROFPID and HHOA‐ROFPID controllers with Oustaloup and Matsuda approximations was then compared not only to the PID controller tuned by the original HHO algorithm but also to other controllers tuned by cutting‐edge meta‐heuristic algorithms such as the atom search optimization algorithm (ASOA), Salp Swarm Algorithm (SSA), sine‐cosine algorithm (SCA), and Grey wolf optimization algorithm (GOA). Simulation results show that the proposed controller with the Matsuda approximation provides better and more robust performance compared to the proposed controller with the Oustaloup approximation and other existing controllers in terms of percentage overshoot, settling time, rise time, and disturbance rejection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.