Abstract

Multi-spectral and hyperspectral image data payloads have large size and may be challenging to download from remote sensors. To alleviate this problem, such images can be effectively compressed using specially designed algorithms. The new CCSDS-123 standard has been developed to address onboard lossless coding of multi-spectral and hyperspectral images. The standard is based on the fast lossless algorithm, which is composed of a causal context-based prediction stage and an entropy-coding stage that utilizes Golomb power-of-two codes. Several parts of each of these two stages have adjustable parameters. CCSDS-123 provides satisfactory performance for a wide set of imagery acquired by various sensors; but end-users of a CCSDS-123 implementation may require assistance to select a suitable combination of parameters for a specific application scenario. To assist end-users, this paper investigates the performance of CCSDS-123 under different parameter combinations and addresses the selection of an adequate combination given a specific sensor. Experimental results suggest that prediction parameters have a greater impact on the compression performance than entropy-coding parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.